

Synchronous Energy Storage

Malta's 100MW Pumped Heat Electricity
Energy Storage

June 15th, 2022

Thermal Long Duration Energy Storage typically offers two major value propositions

Energy shifting

Time horizon	Role of storage	Typical solution
Intraday	Balance variable daily generation with load	8-24 hours LDES
Multiday, multiweek	Support multi-day imbalances Absorb surplus generation to avoid grid congestion	24+ hours LDES
Seasonal duration	Support during seasonal imbalances Mitigate extreme weather events	Hydrogen

Grid services

Grid services offered by LDES

Synchronous Inertia

Fast frequency response (FFR)

Primary/secondary/tertiary reserve

Reactive power/voltage control

Short circuit level improvement

System restoration/ black start

Note: services are technologyspecific

> McKinsey & Company

Source: Long Duration Energy Storage Council

European needs for synchronous storage

Fullfillment of the 10% interconnection target in 2020

https://eepublicdownloads.entsoe.eu/clean-documents/tyndp-documents/TYNDP2018/rgip CSW Full.pdf

https://cincodias.elpais.com/cincodias/2017/07/10/companias/1499700974 956333.html

15GW new synchronous generation open in Spanish Grid

Almost 15.000MW excess capacity available for synchronous generators like Malta PHES

https://www.ree.es/sites/default/files/01_ACTIVIDADES/Documentos/AccesoR ed/Presentacion_SG_CG_10Sept20.pdf

https://www.ree.es/sites/default/files/12 CLIENTES/Documentos/Capacidad de acceso a RdT ED 1sep21.pdf

Breakthrough Grid-Scale Energy Storage

Malta Electricity Charging Cycle

Malta Electricity and Heat Discharging Cycle

Malta PHES storage for delivering power and heat

- Long-Duration 4 to 24+ hours
 Low-Cost 100 MW systems < €200/kWh
 short term down to 100€/kWh mid term
- Long Useful Life Over 25 years w/o storage capacity degradation
 Rotating Inertia - Malta provides inertia to the grid as fossil/nuclear plants retire
 Separation of Charge / Discharge Capacity and Duration
- Ideal for Trading by Decoupling of Charge from Discharge
- Presence of Waste Heat

Proven Sub-Systems - Safe & Reliable

- Commercially-proven subsystems and equipment
- Safe & reliable operation
- Low-cost option based on intrinsic cost advantages
- Ability to decouple power (MW) from energy (MWh)
- Flexible charge-to-discharge ratio enables location- and application-specific solutions
- Malta projects "look like" CCPP assets to the grid (dispatchable, inertia)

100 MW Reference Plant Rendering

Malta M100 3D View and Footprint

Malta M100 Pumped Heat Electricity Storage System

Rated discharge power	100 MWe
Rated charge power	200 MWe
Charge to discharge duration ratio	1:1
Discharge capacity	10-24+ hours
Electric storage capacity	1000-2400 MWhe
Footprint	5-7 hectares
Minimum load (charge and discharge)	27% of rated power
Overall net system efficiency (input-output)	55-60%
Heat loss per day with system fully charged	<1%
Asset lifespan	25+ years
Hot start up time	<10 minutes
Cold Start-up time	<2 hours

Efficient Mode Switching – Modeled After Industry

 The Malta design is <u>modeled after typical</u> simple-cycle gas turbine performance.

Gas turbines start times range from around 8 to 15 minutes to minimum load in peaking service. Combined cycle plants are often slower if not dry-stacked, largely due to steam generation system limitations.

Ramp rates range from 50%/min to 100%/min on gas turbines while Malta is targeting to be competitive in the 25%/min range.

CHARGE

Malta storage for 24/7 green hydrogen production

Malta M100: European sourcing creates European jobs

European
Molten Salt
Tanks & Piping
(Spain)

• Malta M100 will create the following direct jobs:

- Planning & Construction:230 person years over 12 months
- Operation: 25 person years per year over 30 operating years
- Additional jobs will be created for the manufacturing of the heat exchangers, turbo-machinery, and other key components

Thank You

Long-Duration

8 - 24+ Hours

Grid-Scale

10 - 100 MW+

Low-Cost

<€100/kWh

